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Does	an	eeg	confirm	epilepsy.	Will	an	eeg	show	seizure	activity.	Eeg	results	seizure	activity.	Eeg	for	seizure	activity.	Eeg	results	for	epilepsy.

Epilepsy,	one	of	the	most	common	neurological	conditions	characterized	by	epileptic	seizures,	is	the	second	most	common	neurological	disorder	behind	stroke,	according	to	the	World	Health	Organization	(WHO).	Seizures	may	occur,	regardless	of	the	circumstances	or	host	attributes	(Ahmadi	et	al.,	2018).	Patients	with	epilepsy	suffer	from	sudden	and
unforeseen	seizures,	during	which	they	are	unable	to	protect	themselves	and	are	vulnerable	to	suffocation,	death,	or	injury	due	to	fainting	and	traffic	accidents	(Yan	et	al.,	2016a;	Mutlu,	2018).	To	date,	this	disease	is	mainly	treated	with	medications	and	surgery;	no	cure	exists,	and	treatments	with	anticonvulsants	are	not	completely	efficacious	for	all
of	types	of	epilepsy	(López-Hernández	et	al.,	2011;	Yan	et	al.,	2015).	Electroencephalography	(EEG)	plays	an	important	role	in	detecting	epilepsy,	as	it	measures	differences	in	voltage	changes	between	electrodes	along	the	subject's	scalp	by	sense	ionic	currents	flowing	within	brain	neurons	and	provides	temporal	and	spatial	information	about	the
brain	(Misulis,	2013;	Pachori	and	Patidar,	2014).	Detection	with	EEG	requires	a	direct	examination	by	a	physician	as	well	as	a	substantial	amount	of	time	and	effort.	Furthermore,	experts	with	differing	levels	of	diagnostic	experience	sometimes	report	discrepant	opinions	on	the	diagnostic	results	(Wang	et	al.,	2016a;	Yan	et	al.,	2017a).	Therefore,	the
development	of	an	automated,	computer-aided	method	for	the	diagnosis	of	epilepsy	is	urgently	needed	(Iasemidis	et	al.,	2005;	Martis	et	al.,	2015).	In	previous	studies,	various	detection	algorithms	for	epileptiform	EEG	data	have	been	proposed	(De	et	al.,	2008;	Chen	et	al.,	2013).	Existing	methods	for	the	detection	of	seizures	use	hand-engineered
techniques	for	feature	extraction	from	EEG	signals	(Pei	et	al.,	2018),	such	as	time	domain,	frequency	domain,	time-frequency	domain,	and	nonlinear	signal	analyses	(Swapna	et	al.,	2013;	Yan	et	al.,	2017b).	After	feature	extraction,	the	selected	features	must	be	classified	to	recognize	different	EEG	signals	using	all	types	of	classifiers	(Chen	et	al.,
2017).	Hamad	et	al.	used	the	discrete	wavelet	transform	method	to	extract	a	feature	set	and	then	trained	the	support	vector	machine	(SVM)	with	a	radial	basis	function,	showing	that	the	proposed	gray	wolf	optimizer	SVM	approach	is	capable	of	detecting	epilepsy	and	thus	further	enhancing	diagnosis	(Hamad	et	al.,	2017).	Subasi	et	al.	established	a
hybrid	model	to	optimize	the	SVM	parameters	based	on	the	genetic	algorithm	and	particle	swarm	optimization,	showing	that	the	proposed	hybrid	SVM	is	an	efficient	tool	for	neuroscientists	to	detect	epileptic	seizures	using	EEG	(Subasi	et	al.,	2017).	However,	these	methods	do	not	eliminate	the	requirement	for	manual	feature	selection	(Jing	et	al.,
2015;	Wang	et	al.,	2016b).	Feature	extraction	is	a	key	step	in	determining	the	classification,	as	it	largely	determines	its	accuracy.	We	boldly	envision	a	method	in	which	classification	is	performed	without	complex	feature	extraction,	and	the	recent	development	of	deep	learning	(DL)	has	provided	a	new	avenue	for	addressing	this	issue.	DL	has	entered
the	mainstream	in	computer	vision	and	machine	learning	in	the	last	several	years,	exhibiting	near-human	and	superhuman	abilities	to	perform	many	tasks,	such	as	object	detection	and	sequence	learning	(Ahmedt-Aristizabal	et	al.,	2018).	Feature	extraction	prior	to	classification	seems	to	be	more	preferable	than	directly	inputting	raw	EEG	samples
into	the	classifier.	However,	in	some	recent	studies,	feature	extraction	was	not	performed,	and	the	DL	models	were	instead	trained	with	raw	EEG	signals	(Acharya	et	al.,	2017;	Hussein	et	al.,	2018).	While	most	of	these	studies	were	performed	based	on	time	domain	signals,	some	previous	studies	on	EEG	have	also	reported	significant	hidden
information	in	the	frequency	domain.	Wendung	et	al.	focused	on	a	specific	category	of	methods	based	on	analyses	of	the	spatial	properties	of	EEG	signals	in	the	time	and	frequency	domains.	These	methods	have	been	applied	to	both	interictal	and	ictal	recordings	and	share	the	common	objective	of	localizing	the	subsets	of	brain	structures	involved	in
both	types	of	paroxysmal	activity	(Wendung	et	al.,	2009).	Wen	et	al.	proposed	a	genetic	algorithm-based	frequency	domain	feature	search	method	that	exhibited	good	extensibility	(Wen	and	Zhang,	2017).	Therefore,	we	conducted	this	study	based	on	frequency	domain	signals	and	compared	the	seizure	detection	performances	of	both	the	frequency	and
time	domains.	Here,	original	signals	based	on	the	time	or	frequency	domain	were	directly	input	into	the	convolutional	neural	network	(CNN)	instead	of	extracting	all	feature	types.	We	tested	this	method	on	the	intracranial	Freiburg	database	and	the	scalp	CHB-MIT	database.	We	not	only	detected	binary	epilepsy	scenarios,	e.g.,	interictal	vs.	ictal	and
interictal	vs.	preictal,	but	also	verified	the	ability	of	this	method	to	classify	a	ternary	case,	e.g.,	interictal	vs.	ictal	vs.	preictal.	We	compared	the	different	performances	between	the	time	and	frequency	domain	signals	using	CNN	as	a	classifier.	This	paper	is	organized	as	follows:	the	data,	specific	method	proposed	and	performance	indices	are	presented
in	the	second	section.	Detailed	experimental	results	are	presented	in	the	third	section,	and	the	analyses	are	discussed	in	the	fourth	section.	The	conclusions	from	this	study	are	provided	in	the	fifth	section.	Materials	and	Methods	Dataset	Description	One	of	the	databases	utilized	in	this	study	was	prepared	by	the	Epilepsy	Center	at	the	University
Hospital	of	Freiburg,	Germany.	The	database	contains	intracranial	EEG	(iEEG)	data	from	21	patients	with	medically	intractable	focal	epilepsy	that	were	recorded	during	invasive	presurgical	epilepsy	monitoring.	Intracranial	grid,	strip,	and	depth	electrodes	were	utilized	to	obtain	a	high	signal-to-noise	ratio	and	fewer	artifacts	and	to	record	directly
from	focal	areas.	The	EEG	data	were	acquired	using	a	Neurofile	NT	digital	video	EEG	system	with	128	channels	at	a	256-Hz	sampling	rate	(data	from	patient	12	were	sampled	at	512	Hz	but	downsampled	to	256	Hz)	(Zhang	and	Parhi,	2016)	and	a	16-bit	analog-to-digital	converter.	All	patients	in	the	experiment	had	experienced	2–5	seizures,	and	the
dataset	contains	recordings	of	87	seizures	from	21	patients.	In	this	database,	six	contacts	were	selected	for	each	patient	by	a	visual	inspection	of	the	iEEG	data	by	experienced	epileptologists:	three	near	the	epileptic	focus	(epileptogenic	zone)	and	three	in	remote	locations	involved	in	seizure	spread	and	propagation.	The	subjects	ranged	in	age	from
10	to	50	years	and	included	13	women	and	8	men.	Three	different	seizure	types	were	represented	among	the	subjects,	including	simple	partial	(SP),	complex	partial	(CP),	and	generalized	tonic-clonic	(GTC),	and	all	subjects	had	experienced	at	least	two	types.	The	epileptic	focus	was	located	in	neocortical	brain	structures	in	eleven	patients,	in	the
hippocampus	in	eight	patients,	and	in	both	locations	in	two	patients.	The	seizure	onset	times	and	epileptiform	activities	were	annotated	by	certified	epileptologists	at	the	Epilepsy	Center.	The	other	database	used	in	this	study	was	an	open-source	EEG	database	from	CHB-MIT	(	.	The	recordings	were	collected	from	23	children	with	epilepsy	using	scalp
electrodes,	and	EEG	data	were	provided	by	the	Massachusetts	Institute	of	Technology	(MIT,	USA).	The	study	included	17	females	that	ranged	in	age	from	~1.5	to	19	years	and	five	males	that	ranged	in	age	from	3	to	22	years.	The	age	and	sex	information	for	one	child	was	lost.	All	subjects	were	asked	to	stop	related	treatments	1	week	before	data
collection.	The	sampling	frequency	for	all	patients	was	256	Hz.	The	seizure	start	and	end	times	were	labeled	explicitly	based	on	expert	judgments,	and	the	number	and	durations	of	seizure	events	varied	for	each	subject.	For	the	detection	of	ictal,	preictal	and	interictal	signals,	many	segments	were	chosen	for	these	two	open-source	databases.	The
period	when	patients	experience	seizure	onset	is	named	the	ictal	state	and	is	easily	detected	from	raw	signals	by	experts.	The	interictal	period	corresponds	to	the	normal	state	between	two	seizures.	The	transition	from	the	interictal	period	to	the	ictal	period	is	the	preictal	period.	In	this	study,	the	differences	were	evaluated	by	applying	the	CNN	to
each	patient,	and	the	moving-window	technique	was	employed	to	divide	raw	recordings	into	1-s	epochs.	Time	and	Frequency	Domain	Signals	In	the	present	study,	we	used	time	or	frequency	domain	signals	as	inputs	for	classification.	The	frequency	domain	is	a	coordinate	system	that	describes	the	frequency	features	of	the	signals.	A	frequency
spectrogram	reflects	the	relationship	between	the	frequency	and	amplitude	of	a	signal	and	is	often	used	to	analyze	signal	features	(Wen	and	Zhang,	2017).	For	each	channel,	we	first	converted	the	time	domain	signals	into	frequency	domain	signals	using	the	fast	Fourier	transform	(FFT)	method	(Rasekhi	et	al.,	2013).	Figure	1A	shows	the	interictal,
preictal,	and	ictal	recordings	of	a	channel	from	the	time	domain	of	patient	3	in	the	Freiburg	database.	The	EEG	signal	is	obviously	nonlinear	and	nonstationary	in	nature,	while	the	signal	is	highly	complex,	and	a	visual	interpretation	of	the	signals	is	difficult	(Acharya	et	al.,	2017).	Figure	1B	shows	the	frequency	domain	signals	resulting	from	the
application	of	FFT	to	the	interictal,	preictal,	and	ictal	recordings	shown	in	Figure	1A.	The	x-axis	represents	the	frequency,	whereas	the	y-axis	represents	the	amplitude.	Significant	variations	are	observed	among	the	ictal,	preictal,	and	interictal	signals	at	certain	frequencies,	and	these	features	are	suitable	for	classification.	In	contrast,	the	amplitudes
at	some	other	frequencies	are	difficult	to	distinguish,	and	these	enclosed	features	are	ineffective.	Classifiers	require	a	number	of	effective	features.	Compared	with	time	domain	signals,	frequency	domain	signals	are	more	obvious	in	EEG	data	(Ren	and	Wu,	2014).	Figure	1.	The	interictal,	preictal	and	ictal	recordings	from	patient	1.	(A)	Recordings	of
the	time	domain.	(B)	Recordings	of	the	frequency	domain.	CNN	The	use	of	CNNs	for	large-scale	imaging	and	video	recognition	has	been	very	successful	(Sermanet	et	al.,	2013;	Simonyan	and	Zisserman,	2014a)	due	to	the	establishment	of	large	public	image	repositories,	such	as	ImageNet	(Deng	et	al.,	2009),	and	high-performance	computing	systems,
such	as	large-scale	distributed	clusters	(Dean	et	al.,	2012;	Simonyan	and	Zisserman,	2014b).	Recently,	some	studies	have	begun	applying	CNNs	to	EEG	signals	(Ullah	et	al.,	2018),	and	research	interest	in	using	CNNs	for	seizure	prediction	has	increased,	probably	because	these	methods	have	been	used	extensively	and	are	thus	better	established	and
more	familiar	in	the	research	community.	A	CNN	consists	of	an	input	and	an	output	layer,	as	well	as	multiple	hidden	layers.	The	hidden	layers	of	a	CNN	typically	consist	of	convolutional	layers,	pooling	layers	and	fully	connected	layers.	Convolutional	layers	apply	a	convolution	operation	to	the	input,	transferring	the	result	to	the	next	layer.	The
convolution	emulates	the	response	of	an	individual	neuron	to	visual	stimuli.	Convolutional	networks	may	include	local	or	global	pooling	layers	that	combine	the	outputs	of	neuron	clusters	in	one	layer	into	a	single	neuron	in	the	next	layer.	Mean	pooling	uses	the	average	value	from	each	cluster	of	neurons	in	the	previous	layer.	Fully	connected	layers
connect	every	neuron	in	one	layer	to	every	neuron	in	another	layer.	The	CNN	is	in	principle	the	same	as	the	traditional	multi-layer	perceptron	neural	network.	Compared	with	traditional	classifiers,	CNNs	have	obvious	advantages	for	analyzing	high-dimensional	data.	CNNs	employ	a	parameter	sharing	scheme,	which	is	used	in	convolutional	layers	to
control	and	reduce	the	number	of	parameters.	A	pooling	layer	is	designed	to	progressively	reduce	the	spatial	size	of	the	representation	and	the	number	of	parameters	and	computation	in	the	network,	and	subsequently	control	overfitting.	As	shown	in	Figure	2,	a	multichannel	time	series	based	on	time	or	frequency	domain	signals	was	directly	input
into	a	CNN	as	the	input	layer.	The	CNN	models	we	used	consisted	of	three	main	layers.	Structurally,	CNNs	have	convolutional	layers	interspersed	with	pooling	layers,	followed	by	fully	connected	layers.	The	convolutional	layer,	which	has	6	feature	maps	connected	to	the	input	layer	via	5*5	kernels,	consists	of	kernels	that	slide	across	the	EEG	signals.
A	kernel	comprises	the	matrix	to	be	convolved	with	the	input	EEG	signal	and	stride	(stride	=	1)	and	controls	the	extent	to	which	the	filter	convolves	across	the	input	signal.	The	second	layer	comprises	a	2*2	mean	pooling	layer	and	is	mainly	used	to	extract	key	features	and	reduce	the	computational	complexity	of	the	network.	The	final	fully	connected
layer	outputs	the	classification	result	(i.e.,	ictal,	preictal,	or	interictal)	using	sigmoid	activation.	Figure	2.	Illustration	of	the	CNN.	In	this	study,	we	designed	a	CNN	with	no	more	than	three	layers	for	multiple	reasons.	On	one	hand,	the	number	of	samples	acquired	during	ictal	and	preictal	recordings	is	usually	much	smaller	than	the	number	acquired
during	the	interictal	period	in	the	epilepsy	database,	leading	to	a	serious	imbalance	in	the	number	of	samples,	and	a	simple	structure	meets	the	demand	for	fewer	samples.	In	addition,	the	small	number	of	electrodes	also	limits	the	number	of	layers	in	the	network	to	some	extent.	On	the	other	hand,	a	simple	training	structure	is	more	conducive	to	the
online	clinical	diagnosis	of	epileptic	signals	(Yan	et	al.,	2018).	The	detection	system	was	tested	on	all	patients.	The	dataset	was	further	randomly	partitioned	into	training	and	independent	testing	sets	via	6-fold	cross	validation	to	ensure	that	the	results	were	valid	and	generalizable	for	making	predictions	from	new	data.	Each	of	the	six	subsets	acts	as
an	independent	holdout	test	set	for	the	model	trained	with	the	remaining	five	subsets	(Xiang	et	al.,	2015).	During	each	run,	five	subsets	are	used	for	training,	and	the	remaining	subset	is	used	for	testing,	providing	the	advantage	that	all	test	sets	are	independent	of	one	another	(Kevric	and	Subasi,	2014).	Numerous	trials	were	performed	to	test	which
of	the	internal	architectures	analyzed	in	our	experiment	provided	the	most	reasonable	and	proper	results	until	the	mean	squared	error	curve	normalized,	as	shown	in	Figure	3.	Figure	3.	Mean	squared	error.	Prediction	of	Performance	Indices	The	statistical	measures	for	assessing	the	classification	performance	included	accuracy	(acc),	sensitivity	(sen)
and	specificity	(spe),	which	were	calculated	as	follows:	P	denotes	the	number	of	samples	during	a	preictal	or	ictal	period,	N	denotes	the	number	of	samples	during	an	interictal	period,	FP	denotes	the	number	of	samples	in	an	interictal	period	that	were	mistaken	for	a	preictal	or	ictal	period,	FN	denotes	the	number	of	samples	in	a	preictal	or	ictal	period
that	were	mistaken	for	an	interictal	period,	and	TP	and	TN	denote	the	numbers	of	samples	that	were	accurately	classified.	These	three	measures	were	used	to	evaluate	the	performance	of	the	method	to	assess	binary	classification	problems.	For	three-class	problems,	only	accuracy	was	considered.	Results	The	methodology	described	here	was
evaluated	using	the	Freiburg	and	CHB-MIT	databases	based	on	time	and	frequency	domain	signals.	This	system	was	tested	on	three	cases:	two	types	of	experiments	involving	binary	classification	problems	[(i)	interictal	vs.	preictal	and	(ii)	interictal	vs.	ictal]	and	one	three-class	problem	(interictal	vs.	ictal	vs.	preictal).	We	trained	and	tested	our	method
for	each	patient	individually,	and	the	classification	results	for	all	patients	analyzed	are	presented	in	Table	1	through	Table	4.	The	average	accuracy,	sensitivity	and	specificity	values	obtained	are	also	indicated.	Table	1.	Frequency	domain	signal	results	for	all	patients	in	the	Freiburg	database.	Results	From	the	Freiburg	Database	Results	for	the
Frequency	Domain	Signals	The	experimental	results	of	the	segment-based	performance	assessment	of	this	method	for	patients	in	the	Freiburg	database	are	listed	in	Table	1.	The	detection	quality	obviously	varied	with	the	subjects	due	to	the	individual	differences	in	humans.	The	final	row	of	Table	1	displays	the	average	results	of	the	three	statistical
measures	(accuracy,	sensitivity,	and	specificity)	for	all	21	patients.	The	mean	accuracy	of	classification	between	the	interictal	and	preictal	signals	was	96.7%,	and	the	average	sensitivity	and	specificity	values	were	96.7	and	96.8%,	respectively.	The	best	classification	results	were	observed	for	patients	9,	11,	13,	14,	and	21,	while	some	patients	had	poor
results,	such	as	patient	8.	The	sensitivity	and	specificity	values	for	this	patient	were	very	unsatisfactory—at	83.3	and	79.7%,	respectively.	Overall,	the	accuracy	of	classification	was	>90%	for	nearly	all	the	patients,	except	for	patients	8	and	16.	The	classification	sensitivity	and	specificity	values	for	these	patients	were	relatively	balanced.	Good	results
were	also	obtained	for	classification	between	interictal	and	ictal	signals,	as	this	method	exhibited	average	accuracy,	sensitivity,	and	specificity	values	of	95.4,	93.7,	and	97.2%,	respectively.	The	classification	accuracy	for	patient	8	was	less	than	90%,	while	this	value	was	>90%	for	all	other	patients.	The	binary	classification	of	signals	from	patient	9
remained	satisfactory.	The	results	presented	in	the	table	show	that	the	classification	sensitivities	and	specificities	for	each	patient	were	clearly	balanced.	For	the	classification	of	interictal,	ictal,	and	preictal	signals,	only	the	accuracy	of	every	patient	is	presented;	the	average	accuracy	of	classification	among	the	21	patients	was	92.3%.	Among	these
patients,	the	accuracies	of	classification	for	nine	patients	were	>95%,	which	was	considered	a	great	result,	and	the	classification	accuracies	were	good	for	eight	patients,	with	values	ranging	between	90	and	95%.	The	accuracy	of	signal	classification	for	the	other	four	patients	was	90%	for	all	patients.	However,	unsatisfactory	results	for	either
accuracy,	sensitivity	or	specificity	values	were	obtained	for	six	patients.	Almost	ideal	results	were	obtained	for	some	individuals,	such	as	patients	2,	3,	15,	and	19.	When	classifying	the	interictal	and	ictal	segments,	the	overall	results	were	slightly	worse,	as	values	of	only	83.8,	80.4,	and	87.1%	were	obtained	for	the	three	measures,	respectively.	An
accuracy	of	>90%	was	achieved	for	only	seven	patients,	and	the	accuracy	of	classifying	signals	from	patient	8	was	90%	for	all	patients,	and	the	average	results	were	better	than	the	classification	of	interictal	and	preictal	signals.	From	the	overall	perspective	of	all	patients,	the	sensitivities	of	classification	for	patients	14	and	21	were	85%.	All	other
values	of	the	three	measures	were	>90%.	For	the	three-class	problem,	an	accuracy	of	93.0%	was	obtained,	and	the	classification	results	for	some	patients,	such	as	patients	1	and	9,	were	very	good.	A	poor	accuracy	of	signal	classification	was	observed	only	for	patient	14.	The	accuracy	of	signal	classification	for	four	patients	(patients	16,	21,	23,	and
24)	was	unsatisfactory,	ranging	from	80	to	90%,	while	the	accuracy	of	signal	classification	for	the	other	patients	was	>90%.	Results	for	the	Time	Domain	Signals	Table	4	shows	the	time	domain	signal	data	for	all	patients	in	the	CHB-MIT	database.	The	average	performances	of	the	three	experiments	were	obviously	poor,	with	average	accuracies	of
59.5,	62.3,	and	47.9%,	respectively.	A	good	result	was	obtained	in	the	three	experiments	for	only	one	patient,	while	the	results	for	all	other	patients	were	disappointing.	The	diagnostic	performances	of	classifying	interictal	vs.	preictal	signals	in	some	patients,	such	as	patients	4	and	5,	were	maintained	at	only	a	random	level,	and	the	results	obtained
for	patients	22	and	23	were	very	poor	and	below	random	levels.	The	average	accuracy	of	classification	of	interictal	and	ictal	segments	was	slightly	better	than	the	classification	of	interictal	and	preictal	signals.	Inevitably,	the	accuracy	of	classification	for	individual	subjects	was	maintained	at	only	random	or	lower	than	random	levels.	The	average
accuracy	of	classifying	interictal	vs.	ictal	vs.	preictal	signals	was	47.9%.	Table	4.	Time	domain	signal	results	for	all	patients	in	the	CHB-MIT	database.	Comparison	of	the	Frequency	and	Time	Domains	Figure	5	summarizes	the	comparison	of	the	classification	performances	based	on	frequency	and	time	domain	signals	from	subjects	in	the	CHB-MIT
database.	Generally,	the	three	cases	were	detected	effectively	using	frequency	domain	signals.	The	classification	based	on	the	frequency	domain	was	remarkably	more	accurate	than	classification	based	on	the	time	domain.	The	mean	accuracies	of	classification	calculated	using	frequency	domain	signals	were	95.6,	97.5,	and	93.0%	for	the	three
experiments,	which	were	significantly	greater	than	values	calculated	using	time	domain	signals	(59.5,	62.3,	and	47.9%,	respectively).	The	classification	performances	calculated	using	the	frequency	domain	were	higher	than	those	calculated	using	the	time	domain	signals	for	all	patients.	Figure	5.	Comparison	of	accuracies	based	on	frequency	and	time
domain	signals	from	subjects	in	the	CHB-MIT	database.	(A)	Interictal	vs.	preictal.	(B)	Interictal	vs.	ictal.	(C)	Interictal	vs.	ictal	vs.	preictal.	Discussion	Comparison	With	Other	Methods	Many	other	methods	for	detecting	epileptic	seizures	have	been	proposed	by	other	researchers.	For	example,	Shoeb	and	Guttag	presented	a	patient-specific	machine
learning	technique	based	on	the	CHB-MIT	database.	They	extracted	spectral	and	spatial	features	and	then	combined	non-EEG	features	to	form	a	feature	vector;	an	SVM	was	then	used	for	classification.	Their	approach	detected	96%	of	173	test	seizures	in	an	event-based	assessment	(Shoeb	and	Guttag,	2010).	A	method	based	on	the	Freiburg	database
was	presented	in	another	study	(Patnaik	and	Manyam,	2008)	in	which	the	authors	used	wavelet	transform	and	neural	networks	together	with	the	application	of	harmonic	weight	for	classification;	this	method	presented	an	average	specificity	and	sensitivity	of	99.19	and	91.29%,	respectively.	Another	patient-specific	seizure	detection	method	using	the
Freiburg	database	has	been	described	(Yuan	et	al.,	2012).	The	fractal	intercept	derived	from	fractal	geometry	was	extracted	as	a	novel	nonlinear	feature	of	EEG	signals,	and	the	relative	fluctuation	index	was	calculated	as	a	linear	feature.	The	feature	vector	consisting	of	the	two	EEG	descriptors	was	fed	into	a	single-layer	neural	network	for
classification.	For	the	segment-based	level,	the	sensitivity	was	91.72%,	and	the	specificity	was	94.89%.	These	existing	methods	for	the	detection	of	seizures	use	hand-engineered	techniques	to	extract	features	from	EEG	signals.	Their	performance	strongly	depends	on	the	selection	of	hyperparameters	and	the	data,	and	research	requires	not	only	a
wealth	of	expertise	but	also	a	substantial	amount	of	labor.	Therefore,	automatic	feature	learning	has	a	substantial	advantage	over	the	traditional	methods	of	manual	feature	extraction	(Ullah	et	al.,	2018).	CNNs	are	a	type	of	a	DL	method	that	processes	data	without	requiring	manual	feature	extraction	or	selection.	CNNs	extract	features	more
discriminatively	and	robustly	than	hand-designed	features	and	adapt	to	internal	data	structures	(Cun,	1995).	Of	course,	some	studies	have	used	DL	for	seizure	detection.	A	13-layer	deep	CNN	algorithm	was	implemented	to	detect	normal,	preictal	and	seizure	classes	using	the	Bonn	database	(Acharya	et	al.,	2017).	The	proposed	technique	exhibited
accuracy,	specificity	and	sensitivity	values	of	88.67,	90.00,	and	95%,	respectively,	but	the	13-layer	deep	CNN	may	obviously	require	a	substantial	amount	of	labor	to	elucidate	the	best	network	structure.	In	our	study,	the	CNN	included	only	three	main	layers,	and	the	network	was	very	simple	compared	with	the	deep	network.	Meanwhile,	satisfactory
results	were	obtained	from	both	databases	analyzed	using	the	same	network.	In	addition,	a	1-s	time	segment	was	used	for	detection	once	the	model	was	completely	trained.	All	of	these	features	provide	great	possibilities	for	real-time	detection	in	the	clinic.	Compared	with	the	studies	described	above,	our	study	reported	equal	or	even	better
performance.	For	the	Freiburg	database,	we	obtained	average	accuracies	of	96.7,	95.4,	and	94.3%	for	all	three	experiments,	while	the	average	accuracies	obtained	using	the	CHB-MIT	database	were	95.6,	97.5,	and	93%	for	the	three	cases	analyzed.	In	the	present	study,	we	analyzed	two	types	of	binary	classification	problems	and	a	three-class
problem	using	both	intracranial	data	and	scalp	data	based	on	the	proposed	method.	Three-class	problems	have	rarely	been	tested	using	data	from	these	two	databases	and	achieved	good	results,	and	a	large	number	of	results	will	be	powerful	for	proving	the	feasibility	of	the	method.	Frequency	and	Time	Domains	Many	existing	automatic	seizure
detection	techniques	use	traditional	signal	processing	and	machine	learning	techniques.	Some	of	these	techniques	show	good	accuracy	for	one	problem	but	fail	to	perform	accurately	for	others,	e.g.,	they	classify	seizure	vs.	nonseizure	cases	with	good	accuracy	but	show	poor	performance	for	distinguishing	normal	vs.	ictal	vs.	interictal	signals	(Zhang
et	al.,	2017).	One	of	the	remaining	challenges	is	the	development	of	a	generalized	model	that	classifies	both	binary	and	ternary	problems.	Therefore,	we	tested	this	system	on	three	cases:	(i)	interictal	vs.	preictal,	(ii)	interictal	vs.	ictal	and	(iii)	interictal	vs.	ictal	vs.	preictal.	The	results	obtained	from	all	three	experiments	exhibited	>90%	accuracy,	even
for	the	ternary	problem	based	on	the	frequency	domain,	although	the	performance	of	the	system	for	classifying	the	ternary	problem	was	decreased	to	a	certain	degree.	For	all	three	cases,	the	frequency	domain	performed	better	than	the	time	domain.	In	addition,	one	challenge	underlying	the	development	of	a	successful	seizure	detection	method	is
that	some	methods	exhibit	excellent	results	based	on	their	own	databases,	but	their	performance	decreases	when	other	databases	are	used.	Thus,	the	identification	of	a	method	that	adequately	adapts	to	multiple	datasets	is	challenging.	Furthermore,	the	characteristics	of	EEG	analyses	of	different	brain	locations,	patient	ages,	patient	sexes	and
seizure	types	vary	significantly	among	patients	with	epilepsy,	leading	to	substantial	individual	differences	(Wilson	et	al.,	2004;	Yang	et	al.,	2018).	In	this	study,	we	used	two	completely	different	databases	to	test	related	methods,	and	the	patients	in	these	two	databases	exhibited	several	types	of	seizures	and	large	age	ranges.	According	to	our	results,
the	average	accuracy	of	results	based	on	the	frequency	domain	was	better	than	results	based	on	the	time	domain	in	all	experiments,	regardless	of	whether	the	Freiburg	or	CHB-MIT	database	was	used.	In	addition,	better	results	were	obtained	for	most	patients	when	the	frequency	domain	was	analyzed.	Therefore,	this	method	might	be	adapted	to
account	for	individual	differences	or	other	epileptic	databases	to	a	certain	extent.	The	accuracy	range	was	smaller	in	the	frequency	domain	than	in	the	time	domain	across	all	patients	in	both	databases.	Therefore,	individual	differences	may	have	less	of	an	impact	on	the	performance	of	the	method	based	on	the	frequency	domain	than	on	the	time
domain,	indicating	greater	stability.	Finally,	seizure	detection	is	challenging	because	the	electrical	activity	of	the	brain	is	mediated	by	numerous	classes	of	neurons	with	overlapping	characteristics	(Shoeb	and	Guttag,	2010),	and	improvements	in	the	detection	performance	by	extracting	more	effective	features	and	excluding	irrelevant	features	or
redundant	features	among	different	classes	is	thus	impossible.	In	our	study	of	the	Freiburg	database,	the	performance	of	the	time	domain	was	better	than	the	frequency	domain	for	some	patients,	but	the	average	performance	of	the	frequency	domain	was	still	better.	For	the	CHB-MIT	database,	the	frequency	domain	performed	better	than	the	time
domain	in	almost	all	situations.	In	other	words,	both	the	two-class	and	three-class	signals	were	effectively	detected	using	frequency	domain	signals.	The	classification	based	on	the	frequency	domain	was	remarkably	more	accurate,	sensitive	and	specific	than	classification	based	on	the	time	domain	for	both	databases.	Therefore,	the	CNN	may	more
easily	extract	more	effective	features	based	on	the	frequency	domain	than	on	the	time	domain.	Impacts	of	the	Two	Databases	We	completed	three	sets	of	experiments	using	two	different	public	databases.	For	the	analysis	of	frequency	domain	signals	in	the	Freiburg	database,	average	accuracies	of	96.7,	95.4,	and	92.3%	were	obtained	for	the	three
experiments.	For	the	CHB-MIT	database,	the	average	accuracies	of	the	three	experiments	were	95.6,	97.5,	and	93%.	Comparable	performances	were	observed	in	these	two	datasets	when	frequency	domain	segments	were	used	as	input	samples.	However,	the	two	sets	of	data	showed	significant	differences	when	the	original	signal	was	used	as	the
training	data.	For	the	Freiburg	database,	the	average	accuracies	were	91.1,	83.8,	and	85.1%	in	the	three	experiments,	while	the	average	accuracies	for	the	CHB-MIT	database	were	only	59.5,	62.3,	and	47.9%.	One	potential	explanation	for	this	discrepancy	is	that	the	data	in	the	Freiburg	database	were	obtained	from	intracranial	signals,	while	the
signals	in	the	CHB-MIT	database	were	obtained	from	scalp	electrodes.	Intracranial	signals	have	a	high	signal-to-noise	ratio	and	few	artifacts,	while	signals	from	scalp	electrodes	contain	more	noise	interference,	which	may	result	in	the	extraction	of	low-quality	features.	Another	potential	explanation	for	this	discrepancy	is	that	the	signals	in	the
Freiburg	database	were	recorded	directly	from	focal	areas,	while	signals	in	the	CHB-MIT	database	were	recorded	from	whole-brain	electrodes,	and	more	redundant	information	may	have	been	included.	Intracranial	EEGs	also	include	features	that	are	not	observed	within	the	scalp	EEGs	because	of	the	spatial	averaging	effect	of	the	dura	and	skull
(Shoeb	and	Guttag,	2010).	Conclusions	Currently,	epileptic	activity	in	EEG	recordings	is	mainly	examined	using	a	number	of	traditional	and	trending	technologies.	Automation	of	this	process	presents	many	advantages,	including	a	faster	diagnosis,	continuous	monitoring,	and	reduction	in	the	overall	cost	of	medical	treatment	(Yan	et	al.,	2016b).	We
conducted	experiments	to	compare	the	performances	of	time	and	frequency	domain	signals.	The	method	not	only	avoided	the	complex	feature	extraction	process	but	also	used	a	very	simple	CNN	structure.	Both	the	Freiburg	and	CHB-MIT	datasets	were	analyzed	to	confirm	the	validity	of	our	method,	and	frequency	domain	signals	performed	better
than	time	domain	signals.	When	frequency	domain	signals	were	analyzed,	both	two-	and	three-class	problems	were	solved	with	satisfactory	results.	One	limitation	of	this	study	is	that	the	large	volumes	of	continuous	EEG	recordings	required	for	deep	learning	algorithms	are	limited.	In	addition,	the	non-abruptness	phenomenon	and	inconsistency	of	the
signals,	along	with	different	brain	location,	patient	ages,	patient	sexes	and	seizure	types	are	challenging	issues	that	affect	the	consistency	of	performance.	In	the	future,	we	plan	to	apply	this	method	to	online	epileptic	signal	detection.	After	classification,	our	next	research	object	is	to	develop	a	successful	seizure	forecasting	model.	Author
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